Hàm số không có giá trị lớn nhất khi nào năm 2024

Tài liệu gồm 172 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của hàm số, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12.

BÀI 3. GIÁ TRỊ NHỎ NHẤT VÀ GIÁ TRỊ LỚN NHẤT CỦA HÀM SỐ.

  1. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Tìm max – min trên đoạn bằng hàm số cụ thể, bảng biến thiên, đồ thị hàm số cho trên đoạn và khoảng. + Dạng 2. Tìm max – min bằng phương pháp đổi biến. + Dạng 3. Một số bài toán có chứa tham số. + Dạng 4. Phương pháp đặt ẩn phụ để giải quyết bài toán tìm điều kiện của tham số m sao cho phương trình f(x;m) = 0 có nghiệm (có ứng dụng GTLN – GTNN). + Dạng 7. Phương pháp đặt ẩn phụ để giải quyết bài toán tìm điều kiện của tham số để bất phương trình có nghiệm hoặc nghiệm đúng với mọi x thuộc k (có ứng dụng GTLN – GTNN). + Dạng 8. Bài toán thực tế. III. BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của bộ giáo dục từ năm 2017 đến nay. 2. Bài tập trắc nghiệm mức độ 5 – 6 điểm. + Dạng 1. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số thông qua đồ thị, bảng biến thiên. + Dạng 2. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên đoạn. + Dạng 3. Xác định giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên khoảng (a;b). 3. Bài tập trắc nghiệm mức độ 7 – 8 điểm. + Dạng. Định m để GTLN – GTNN của hàm số thỏa mãn điều kiện cho trước. 4. Bài tập trắc nghiệm mức độ 9 – 10 điểm. + Dạng 1. Định m để GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối thỏa mãn điều kiện cho trước. + Dạng 2. Giá trị lớn nhất – giá trị nhỏ nhất hàm ẩn, hàm hợp. + Dạng 3. Ứng dụng GTLN – GTNN giải bài toán thực tế. + Dạng 4. Dùng phương pháp hàm số để tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức.
  • Khảo Sát Và Vẽ Đồ Thị Hàm Số

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

$y = f\left( x \right)$ trên tập D nếu $f\left( x \right) \le M$ với mọi x thuộc D và tồn tại ${x_0} \in D$ sao cho $f\left( {{x_0}} \right) = M$.

Kí hiệu $M = \mathop {\max }\limits_D f\left( x \right)$

  1. Số m được gọi là giá trị lớn nhất của hàm số $y = f\left( x \right)$ trên tập D nếu $f\left( x \right) \ge m$ với mọi x thuộc D và tồn tại ${x_0} \in D$ sao cho $f\left( {{x_0}} \right) = m$.

Kí hiệu $M = \mathop {\min }\limits_D f\left( x \right)$.

II. CÁCH TÍNH GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ TRÊN MỘT ĐOẠN

* Định lí

Mọi hàm số liên tục trên một đoạn đều có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.

Cách tính giá trị lớn nhất và nhỏ nhất của hàm số, ta có 2 quy tắc sau:

1. Quy tắc 1 (sử dụng định nghĩa)

- Giả sử f xác định trên $D \subset R$, ta có:

$\begin{array}{l} M = \mathop {\max }\limits_{x \in D} f\left( x \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {f\left( x \right) \le M,\forall x \in D}\\ {\exists {x_o} \in D:f\left( {{x_o}} \right) = M} \end{array}} \right.\\ m = \mathop {\min }\limits_{x \in D} f\left( x \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {f\left( x \right) \ge m,\forall x \in D}\\ {\exists {x_o} \in D:f\left( {{x_o}} \right) = m} \end{array}} \right. \end{array}$

2. Quy tắc 2 (Quy tắc tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn)

Để tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $f\left( x \right)$ xác định trên đoạn $\left[ {a;b} \right]$, ta làm như sau:

- Bước 1: Tìm các điểm ${x_1},{x_2},...,{x_n} \in \left( {a;b} \right)$ mà tại đó hàm số f có đạo hàm bằng 0 hoặc không có đạo hàm.

- Bước 2: Tính $f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)$.

- Bước 3: so sánh các giá trị tìm được ở bước 2. Số lớn nhất trong các giá trị đó chính là giá trị lớn nhất của f trên đoạn $\left[ {a;b} \right]$; số nhỏ nhất trong các giá trị đó chính là giá trị nhỏ nhất của f trên đoạn $\left[ {a;b} \right]$.

12C1,19,12C2,11,12KNTT,30,Ảnh đẹp,18,Bài giảng điện tử,10,Bạn đọc viết,225,Bất đẳng thức,75,Bđt Nesbitt,3,Bổ đề cơ bản,9,Bồi dưỡng học sinh giỏi,41,Cabri 3D,2,Các nhà Toán học,131,Câu đố Toán học,83,Câu đối,3,Cấu trúc đề thi,15,Chỉ số thông minh,4,Chuyên đề Toán,291,congthuctoan,9,Công thức Thể tích,11,Công thức Toán,113,Cười nghiêng ngả,31,Danh bạ website,1,Dạy con,8,Dạy học Toán,290,Dạy học trực tuyến,20,Dựng hình,5,Đánh giá năng lực,1,Đạo hàm,17,Đề cương ôn tập,39,Đề kiểm tra 1 tiết,29,Đề thi - đáp án,988,Đề thi Cao đẳng,15,Đề thi Cao học,7,Đề thi Đại học,159,Đề thi giữa kì,20,Đề thi học kì,134,Đề thi học sinh giỏi,128,Đề thi THỬ Đại học,404,Đề thi thử môn Toán,68,Đề thi Tốt nghiệp,48,Đề tuyển sinh lớp 10,100,Điểm sàn Đại học,5,Điểm thi - điểm chuẩn,224,Đọc báo giúp bạn,13,Epsilon,9,File word Toán,41,Giải bài tập SGK,46,Giải chi tiết,202,Giải Nobel,1,Giải thưởng FIELDS,24,Giải thưởng Lê Văn Thiêm,4,Giải thưởng Toán học,5,Giải tích,29,Giải trí Toán học,170,Giáo án điện tử,11,Giáo án Hóa học,2,Giáo án Toán,22,Giáo án Vật Lý,3,Giáo dục,367,Giáo trình - Sách,82,Giới hạn,20,GS Hoàng Tụy,8,GSP,6,Gương sáng,212,Hằng số Toán học,19,Hình gây ảo giác,9,Hình học không gian,108,Hình học phẳng,91,Học bổng - du học,12,IMO,22,Khái niệm Toán học,66,Khảo sát hàm số,37,Kí hiệu Toán học,13,LaTex,12,Lịch sử Toán học,81,Linh tinh,7,Logic,11,Luận văn,1,Luyện thi Đại học,231,Lượng giác,57,Lương giáo viên,3,Ma trận đề thi,7,MathType,7,McMix,2,McMix bản quyền,3,McMix Pro,3,McMix-Pro,3,Microsoft phỏng vấn,11,MTBT Casio,28,Mũ và Logarit,38,MYTS,8,Nghịch lí Toán học,11,Ngô Bảo Châu,49,Nhiều cách giải,36,Những câu chuyện về Toán,15,OLP-VTV,33,Olympiad,315,Ôn thi vào lớp 10,3,Perelman,8,Ph.D.Dong books,7,Phần mềm Toán,26,Phân phối chương trình,11,Phụ cấp thâm niên,3,Phương trình hàm,4,Sách giáo viên,15,Sách Giấy,11,Sai lầm ở đâu?,13,Sáng kiến kinh nghiệm,8,SGK Mới,29,Số học,58,Số phức,34,Sổ tay Toán học,4,Tạp chí Toán học,38,TestPro Font,1,Thiên tài,98,Thống kê,2,Thơ - nhạc,9,Thủ thuật BLOG,14,Thuật toán,3,Thư,2,Tích phân,79,Tính chất cơ bản,15,Toán 10,149,Toán 11,180,Toán 12,431,Toán 9,71,Toán Cao cấp,26,Toán học Tuổi trẻ,26,Toán học - thực tiễn,100,Toán học Việt Nam,29,Toán THCS,22,Toán Tiểu học,5,toanthcs,6,Tổ hợp,39,Trắc nghiệm Toán,222,TSTHO,5,TTT12O,1,Tuyển dụng,11,Tuyển sinh,272,Tuyển sinh lớp 6,8,Tỷ lệ chọi Đại học,6,Vật Lý,24,Vẻ đẹp Toán học,109,Vũ Hà Văn,2,Xác suất,28,