Tam giác pascal lớp 8

Tam giác pascal lớp 8

Hôm nay, chúng ta sẽ cùng nhau học về một cấu trúc số nổi tiếng, đó là tam giác số Pascal.

Tam giác pascal lớp 8
tam giác số Pascal

Tam giác số này được xây dựng như sau.

  • Ở hàng đầu tiên, chúng ta viết một con số 1.
  • Ở hàng tiếp theo, chúng ta viết hai con số 1.
  • Tiếp tục các hàng tiếp theo, 
    • con số đầu tiên và con số cuối cùng bao giờ cũng là 1;
    • còn mỗi con số ở bên trong thì bằng tổng của hai con số đứng ngay ở hàng phía trên.

Ví dụ như: $1 + 1 = 2$, $1 + 2 = 3$, $2 + 1 = 3$, $1 + 3 = 4$, $3 + 3 = 6$, $3 + 1 = 4$, v.v...

Tam giác pascal lớp 8
cách xây dựng tam giác Pascal: $4 + 6 = 10$

Chúng ta dùng tam giác số Pascal để khai triển các biểu thức $(x+y)^n$ và $(x-y)^n$ như hình sau đây.

Tam giác pascal lớp 8
dùng các hệ số trong tam giác Pascal để khai triển biểu thức $(x+y)^n$
Tam giác pascal lớp 8
dùng các hệ số trong tam giác Pascal để khai triển biểu thức $(x-y)^n$

Chúng ta đánh số mỗi hàng của tam giác Pascal theo thứ tự bắt đầu là hàng số 0, tiếp đến là hàng số 1, hàng số 2, v.v... Còn trên mỗi hàng, chúng ta sắp xếp thứ tự các con số bắt đầu là con số thứ 0, tiếp đến là con số thứ 1, rồi con số thứ 2, v.v...

Chúng ta sẽ gọi con số thứ $k$ ở hàng thứ $n$ là $p_{n,k}$. Từ đó suy ra công thức để xây dựng tam giác Pascal là $$p_{n-1,k-1} + p_{n-1,k} = p_{n,k}.$$

Tam giác pascal lớp 8
công thức xây dựng tam giác Pascal: $p_{n-1,k-1} + p_{n-1,k} = p_{n,k}$

Công thức tổng quát của $p_{n,k}$ là như sau
$$p_{n,k} = {n \choose k} = \frac{n!}{k! (n-k)!}$$

Ví dụ,
$$p_{5,2} = {5 \choose 2} = \frac{5!}{2! 3!} = \frac{1 \times 2 \times 3 \times 4 \times 5}{1 \times 2 \times 1 \times 2 \times 3} = 10.$$

Cuối cùng, xin lưu ý rằng, thông thường thì chúng ta hay đánh số thứ tự từ số 1. Nhưng với tam giác Pascal thì chúng ta đánh số thứ tự khởi đầu từ số 0. Cách đánh số khởi đầu bằng số 0 này hơi đặc biệt. Do đó để giúp các bạn ghi nhớ cách đánh số này, tôi xin kể cho các bạn một câu chuyện vui về nhà toán học Sierpinski.

Waclaw Sierpinski là một nhà toán học nổi tiếng người Ba Lan. Người ta kể lại rằng ông là người khá lơ đãng. Một hôm, ông và vợ ông phải chuyển nhà. Hai ông bà mang đồ đạc xuống để bên vệ đường rồi bà Sierpinski mới nói với chồng rằng "Bây giờ anh đứng đây coi chừng mười thùng đồ này cho em để em đi gọi taxi". Vài phút sau bà quay lại thì ông nheo mắt nói với bà "Anh tưởng em nói với anh coi chừng mười thùng đồ, nhưng sao anh đếm chỉ thấy có chín thùng." Bà vợ hốt hoảng tưởng là ông chồng mình lơ đãng để người ta trộm mất một thùng đồ, "Không, em chắc chắn là mười thùng mà!", "Không, em đếm lại đi, anh vừa đếm xong, đúng là chín thùng. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9!"

Sierpinski có viết một quyển sách rất hay về số học, đã được dịch ra tiếng Việt cách đây khá lâu, tôi không nhớ rõ tựa đề, hình như là "Tuyển tập các bài toán chọn lọc về số học". Nếu các bạn yêu thích số học thì nên tìm đọc quyển sách này.

Xin hẹn gặp lại các bạn ở kỳ sau.

Bài tập về nhà.

1. Dùng quy tắc xây dựng tam giác Pascal để giải thích vì sao tổng các số trên hàng $n$ của tam giác Pascal bằng $2^n$.

2. Chứng minh rằng số thứ $k$ trên dòng thứ $n$ của tam giác Pascal là $$p_{n,k} = {n \choose k} = \frac{n!}{k! (n-k)!}.$$


3. Chứng minh hằng đẳng thức 

$$(x+y)^n = x^n + {n \choose 1} x^{n-1} y + {n \choose 2} x^{n-2} y^2 + \dots + {n \choose {n-2}} x^{2} y^{n-2} + {n \choose 1} x  y^{n-1} + y^n$$

Khai triển đa thức là biến đổi một đa thức ở dạng tích các tổng, hoặc hiệu thành dạng tổng, hoặc hiệu các tích.

Khai triển đa thức là một trong những kiến thức cơ bản của môn Đại số mà ngay từ những năm Trung học cơ sở chúng ta đã được học

Trong rất nhiều bài toán chúng ta cần thực hiện thao tác khai triển mới có thể tìm ra đáp án, tiêu biểu như rút gọn biểu thức, rút gọn phân thức, giải phương trình, tính giới hạn, đạo hàm, tích phân, …

Về cơ bản thì quá trình khai triển không có gì khó khăn cả, nhưng khai triển sao cho nhanh chóng và chính xác thì không phải ai cũng làm được.

Có khá nhiều cách giúp chúng ta khai triển đa thức nhanh chóng và chính xác, trong đó dựa vào tam giác Pascal là một trong những cách phổ biến nhất. Và đó cũng là nội dung chính trong bài viết này.

Mục Lục Nội Dung

  • #1. Tam giác Pascal là gì?
  • #2. Cách xây dựng tam giác Pascal
  • #3. Ứng dụng tam giác Pascal trong giải toán như thế nào?
  • #4. Bài tập ví dụ minh họa tam giác Pascal
  • #5. Lời kết

#1. Tam giác Pascal là gì?

Tam giác Pascal là một mảng tam giác của các hệ số nhị thức. Các con số được sắp xếp để chúng phản ánh như một hình tam giác.

Tam giác Pascal được đặt tên theo tên của nhà Toán học đã tìm ra nó (Blaise Pascal).

Tam giác pascal lớp 8
7 dòng đầu tiên của một tam giác Pascal

#2. Cách xây dựng tam giác Pascal

Bước 1. Dòng thứ nhất viết một con số 1

Tam giác pascal lớp 8

Bước 2. Dòng thứ 2, viết hai con số 1

Tam giác pascal lớp 8

Bước 3. Dòng thứ ba …

a) Ở vị trí đầu dòng và cuối dòng viết số 1

Tam giác pascal lớp 8

b) Số ở chính giữa bằng tổng của hai số ở dòng thứ 2

Tam giác pascal lớp 8

Bước 4. Dòng thứ 4, dòng thứ 5, dòng thứ 6, …, thực hiện tương tự Bước 3

Tam giác pascal lớp 8

Một số lưu ý:

  • Dòng thứ n sẽ có n số.
  • Số đầu tiên và số cuối cùng trong cùng một dòng luôn là số 1
  • Dòng thứ n tương ứng với bậc n-1

Nếu xem tam giác Pascal là một tam giác cân thì hai cạnh bên luôn được tạo thành từ những con số 1

Tam giác trên có 7 dòng tương ứng với bậc 6, một cách dễ hiểu hơn là tam giác trên có thể sử dụng để khai triển biểu thức $(ax \pm by)^n$ với n tối đa bằng 6

#3. Ứng dụng tam giác Pascal trong giải toán như thế nào?

Hầu hết chúng ta đều sử dụng tam giác Pascal để khai triển các nhị thức, tức là các biểu thức có dạng $(ax \pm by)^n$

Chẳng hạn như: $(x+y)^2, (x-y)^3, (2x+3y)^2, \left(\frac{2}{3}x-\frac{5}{7}y\right)^3$

Chú ý:

  • n là một số tự nhiên.
  • a, b có thể là số thực hoặc đa thức.

#4. Bài tập ví dụ minh họa tam giác Pascal

Ví dụ 1. Khai triển nhị thức $(x+y)^2$

>Cách tư duy:

Bước 1. Xác định dấu và hệ số của các hạng tử.

  • Vì dấu của nhị thức là dấu + nên dấu của tất cả các hạng tử sẽ là dấu +
  • n = 2 nên chúng ta sẽ sử dụng dòng thứ ba của tam giác tức 1, 2, 1

$+1+2+1$

Bước 2. Biểu diễn x, bậc của x sẽ giảm dần từ 2 đến 0

$+1x^2+2x^1+1x^0$

Bước 3. Biểu diễn y, bậc của y sẽ tăng dần từ 0 đến 2

$+1x^2y^0+2x^1y^1+1x^0y^2$

Bước 4. Rút gọn biểu thức

$+1x^2y^0+2x^1y^1+1x^0y^2=x^2+2xy+y^2$

Vậy $(x+y)^2=x^2+2xy+y^2$

Trình bày lời giải:

$(x+y)^2=+1x^2y^0+2x^1y^1+1x^0y^2=x^2+2xy+y^2$

Một số lưu ý:

  • Nếu chưa quen thì bạn nên viết quá trình tư duy ra giấy nháp trước.
  • “Bao nhiêu” mũ 1 cũng bằng chính nó
  • “Bao nhiêu” mũ 0 cũng bằng 1

Ví dụ 2.Khai triển nhị thức $(x-y)^3$

  • Vì dấu của nhị thức là dấu – nên dấu của các hạng tử lần lượt là +, -, +, –
  • Vì n = 3 nên chúng ta sẽ sử dụng dòng thứ tư của tam giác tức 1, 3, 3, 1

Lời giải:

$(x-y)^3=+1x^3y^0-3x^2y^1+3x^1y^2-1x^0y^3=x^3+3x^2y+3xy^2+y^3$

Ví dụ 3. Khai triển nhị thức $(2x+3y)^2$

  • Vì dấu của nhị thức là dấu + nên dấu của các hạng tử sẽ là +, +, +
  • n = 2 nên chúng ta sẽ sử dụng dòng thứ ba của tam giác tức 1, 2, 1

Lời giải:

$(2x+3y)^2=+1(2x)^2(3y)^0+2(2x)^1(3y)^1+1(2x)^0(3y)^2=4x^2+12xy+9y^2$

Ví dụ 4. Khai triển nhị thức $\left(\frac{2}{3}x-\frac{5}{7}y\right)^3$

  • Vì dấu của nhị thức là dấu nên dấu của các hạng tử lần lượt là +, -, +, –
  • n = 3 nên chúng ta sẽ sử dụng dòng thứ tư của tam giác tức 1, 3, 3, 1

Lời giải:

$\left(\frac{2}{3}x-\frac{5}{7}y\right)^3$

$=+1\left(\frac{2}{3}x\right)^3\left(\frac{5}{7}y\right)^0-3\left(\frac{2}{3}x\right)^2\left(\frac{5}{7}y\right)^1+3\left(\frac{2}{3}x\right)^1\left(\frac{5}{7}y\right)^2-1\left(\frac{2}{3}x\right)^0\left(\frac{5}{7}y\right)^3$

$=\frac{8}{27} x^{3}-\frac{20}{21} x^{2} y+\frac{50}{49} x y^{2}-\frac{125}{343} y^{3}$

Ví dụ 5. Khai triển đa thức $(2x+3y-5z)^2$

Nhận xét $(2x+3y-5z)^2$ không phải là một nhị thức nhưng nếu biết cách sử dụng linh hoạt chúng ta vẫn có thể dựa vào tam giác Pascal để hỗ trợ quá trình khai triển

Cách 1: Sử dụng tam giác Pascal

$(2x+3y-5z)^2=[(2x+3y)-5z]^2$

  • Vì dấu của $[(2x+3y)-5z]^2$ là dấu – nên dấu của các hạng tử lần lượt là +, -, +
  • n = 2 nên chúng ta sẽ sử dụng dòng thứ ba của tam giác tức 1, 2, 1

Lời giải:

$[(2x+3y)-5z]^2$

$=+1(2x+3y)^2(5z)^0-2(2x+3y)^1(5z)^1+1(2x+3y)^0(5z)^2$

$=(2x+3y)^2-2(2x+3y)(5z)+25z^2$

Vì $(2x+3y)^2=4x^2+12xy+9y^2$ nên …

$=(4x^2+12xy+9y^2)-2(2x+3y)(5z)+25z^2$

$=4 x^{2}+12 x y-20 x z+9 y^{2}-30 y z+25 z^{2}$

Cách 2: Sử dụng hằng đẳng thức

Để khai triển nhanh đa thức $(2x+3y-5z)^2$ bạn có thể sử dụng hằng đẳng thức $(a+b-c)^2=a^{2}+2 a b-2 a c+b^{2}-2 b c+c^{2}$

Ở đây a, b, c trong công thức sẽ lần lượt bằng 2x, 3y, 5z

$(2x+3y-5z)^2$

$=(2x)^2+2(2x)(3y)-2(2x)(5z)+(3y)^2-2(3y)(5z)+(5z)^2$

$=4 x^{2}+12 x y-20 x z+9 y^{2}-30 y z+25 z^{2}$

Cách 3: Nhân đa thức với đa thức

Cách này rất tốn thời gian nên mình không khuyến khích sử dụng, chỉ sử dụng khi bạn quên mất cách lập tam giác Pascal và quên luôn hằng đẳng thức $(a+b-c)^2$

$(2x+3y-5z)^2$

$=(2x+3y-5z)(2x+3y-5z)$

$=2x.2x+2x.3y-2x.5z+3y.2x+3y.3y-3y.5z-5z.2x-5z.3y+5z.5z$

$=4 x^{2}+12 x y-20 x z+9 y^{2}-30 y z+25 z^{2}$

#5. Lời kết

Như vậy tam giác Pascal sẽ giúp chúng ta khai triển nhanh các biểu thức có dạng $(ax \pm by)^2$ hoặc các biểu thức có dạng gần gần như vậy.

Tương tự như các phương pháp khác, phương pháp này cũng có một số nhược điểm nhất định, đó là:

  • Giả sử bạn cần sử dụng kết quả của dòng thứ 6 thì bạn phải bắt đầu lập từ dòng thứ 1 chứ không thể bắt đầu từ dòng thứ 5 từ khi bạn thuộc được dòng thứ 5.
  • Khi n có giá trị lớn hơn 10 thì việc khai triển bằng cách dựa vào tam giác Pascal khá tốn thời gian.

Để khắc phục 2 nhược điểm trên bạn có thể tìm hiểu về thêm nhị thức Newton trên Wikipedia nhé. Hi vọng bài viết này sẽ hữu ích với bạn, xin chào tạm biệt và hẹn gặp lại các bạn trong những bài viết tiếp theo !

Đọc thêm:

  • 7 cách giải phương trình bậc hai đơn giản, hiệu quả
  • Tính khoảng cách giữa 2 đường thẳng chéo nhau bằng CASIO

CTV: Nhựt Nguyễn – Blogchiasekienthuc.com

Bài viết đạt: 5/5 sao - (Có 1 lượt đánh giá)

Note: Bài viết này hữu ích với bạn chứ? Đừng quên đánh giá bài viết, like và chia sẻ cho bạn bè và người thân của bạn nhé !

Tải thêm tài liệu liên quan đến bài viết Tam giác pascal lớp 8