Trọng tâm trực tâm là gì

Trực tâm tam giác hay trực tâm trong không gian đều là những kiến thức hình học cơ bản ta đã được học trong chương trình toán học trung học cơ sở. Tuy nhiên nhiều năm trôi qua có rất ít người có thể nhớ một cách chính xác trực tâm là gì?

Vậy trực tâm là gì? Khách hàng quan tâm vui lòng theo dõi nội dung bài viết dưới đây để có thêm thông tin chi tiết.

Khái niệm trực tâm

Trực tâm là giao điểm 3 đường cao tương ứng với 3 đỉnh của một tam giác. Mỗi tam giác chỉ có 1 trực tâm duy nhất. Trực tâm có thể nằm trong hoặc ngoài miền của tam giác.

Đường cao tương ứng với một đỉnh của tam giác là đường thẳng nối từ đỉnh đó đến cạnh đối diện và vuông góc với cạnh đối diện tại điểm cắt. Cạnh đối diện này còn được gọi là cạnh đáy tương ứng với đường cao đó. Độ dài đường cao theo định nghĩa chính là khoảng cách giữa đỉnh và đáy tương ứng với nó.

Giả sử cho tam giác LMN có ba đường cao lần lượt là LP, MQ, NI. Gọi S là là giao điểm của ba đường cao trên thì S là trực tâm của tam giác LMN.

Tính chất của trực tâm trong tam giác

Trực tâm tam giác có nhiều định lý, tính chất quan trọng. Muốn làm tốt các dạng bài tập toán hình học, bạn cần nắm rõ các định lý, tính chất này để vận dụng làm bài tập nhanh chóng, hiệu quả.

Nếu ba đường cao của tam giác cùng đi qua một điểm thì điểm đó được gọi là trực tâm của tam giác.  Khoảng cách từ tâm đường tròn ngoại tiếp tam giác đến trung điểm của một cạnh bằng ½  khoảng cách từ trực tâm tới đỉnh còn lại của tam giác đó.

Trong tam giác cân, đường trung trực tương ứng với cạnh đáy đồng thời là đường phân giác, đường cao và đường trung tuyến của tam giác đó.

Trong một tam giác, nếu đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.

Trong một tam giác, nếu đường trung tuyến đồng thời là đường trung trực thì tam giác đó là tam giác cân.

Trực tâm của tam giác nhọn ABC trùng với tâm đường tròn nội tiếp tam giác được tạo bởi 3 đỉnh là 3 chân đường cao tương ứng với 3 đỉnh của tam giác ABC.

Định lý Carnot: Đường cao tương ứng với một đỉnh của tam giác cắt đường tròn ngoại tiếp tam giác ở đâu thì điểm đó là điểm đối xứng với trực tâm của tam giác đó qua cạnh đáy đối xứng với đỉnh.

Ví dụ: Cho tam giác ABC có đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại D, trực tâm là điểm P.

Theo định lý Carnot, D sẽ đối xứng với P qua BC, Hệ quả: Trong tam giác đều ABC, trọng tâm, trực tâm tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp trùng nhau. Ví dụ: Tam giác đều ABC có đường cao đồng thời là đường trung tuyến và đường phân giác. Trực tâm O đồng thời là tâm đường tròn ngoại tiếp và tâm đường tròn nội tiếp.

Từ những tính chất trên ta rút ra hệ quả như sau: Trong một tam giác đều, trực tâm, trọng tâm, điểm nằm trong tam giác, điểm cách đều ba đỉnh, và cách đều ba cạnh là bốn điểm này đều trùng nhau, là một điểm.

Cách xác định trực tâm hình tam giác

Theo định nghĩa, trực tâm tam giác là giao điểm 3 đường cao tương ứng với 3 đỉnh của tam giác đó. Tuy nhiên, chỉ cần tìm giao điểm 2 đường cao là chúng ta dễ dàng xác định được trực tâm một tam giác, không cần vẽ cả 3 đường cao. Với các dạng tam giác khác nhau, vị trí trực tâm khác nhau.

Trong tam giác nhọn, trực tâm là điểm nằm bên trong tam giác Trong tam giác tù, trực tâm là điểm nằm bên ngoài tam giác. Trong tam giác vuông, trực tâm chính là đỉnh góc vuông của tam giác.

Ví dụ: Vì tam giác vuông FHG có góc đặc biệt nên đỉnh góc vuông H đồng thời là trực tâm của tam giác.

Ngoài ra, dựa vào các định lý, tính chất đã nêu ở phần trên, ta có thêm một số cách xác định trực tâm tam giác như sau:

Theo tính chất “Khoảng cách từ tâm đường tròn ngoại tiếp tam giác đến trung điểm của một cạnh bằng ½  khoảng cách từ trực tâm tới đỉnh còn lại của tam giác đó”, nếu biết tâm đường tròn ngoại tiếp tam giác, ta dễ dàng xác định trực tâm như sau: Kẻ 1 đường cao và 1 đường từ tâm đường tròn này đến trung điểm cạnh đối diện với đỉnh đường cao đó. Từ đây, tìm 1 điểm nằm trên đường cao cách đỉnh tam giác tương ứng một khoảng gấp đôi khoảng cách từ tâm đường tròn tới trung điểm cạnh đối diện, điểm đó là trực tâm.

Theo Định lý Carnot: Đường cao tương ứng với một đỉnh của tam giác cắt đường tròn ngoại tiếp tam giác ở đâu thì điểm đó là điểm đối xứng với trực tâm của tam giác đó qua cạnh đáy đối xứng với đỉnh, bạn có thể xác định trực tâm như sau: Kẻ 1 đường cao của tam giác đó, đường cao đó cắt đường tròn tại 1 điểm thứ 2 [ngoài đỉnh tam giác], tìm điểm đối xứng với điểm đó qua đáy tương ứng sẽ là trực tâm.

Trên đây là một số chia sẻ của chúng tôi về Trực tâm là gì? cùng một số vấn đề liên quan. Khách hàng theo dõi bài viết có vướng mắc xin vui lòng phản hồi trực tiếp để được nhân viên hỗ trợ nhanh nhất.

Đường trực tâm tam giác là kiến thức toán học cơ bản của lớp 7 nhưng lại được vận dụng rất nhiều để giải các bài toán lớp 8, 9 và cấp 3. Nếu bạn không nắm chắc được định nghĩa trực tâm là gìtính chất đường trực tâm trong tam giácsẽ không giải được các bài tập. Tất cả đã được chúng tôi trình bày chi tiết trong bài viết dưới đây

Trực tâm của tam giác là gì?

Trực tâm của tam giác là giao điểm của ba đường cao trong tam giác đó. Nói cách khác, ba đường cao của tam giác đồng quy tại một điểm gọi là trực tâm của tam giác.

Ví dụ: Tam giác ABC có ba đường cao là AM, BN, CP. Gọi H là giao điểm của ba đường cao trên thì H là trực tâm của tam giác ABC.

Tính chất đường trực tâm trong tam giác

Hệ quả: Trong tam giác đều, trọng tâm, trực tâm, điểm cách đều ba cạnh, điểm nằm trong tam giác và cách đều ba cạnh là bốn điểm trùng nhau

Cách xác định đường trực tâm của một tam giác

Đối với mỗi loại tam giác sẽ có địa điểm và cách xác định trực tâm khác nhau:

1. Tam giác nhọn

Trực tâm nằm ở miền trong tam giác đó.

Ví dụ: Tam giác nhọn ABC có trực tâm H nằm ở miền trong tam giác.

2. Tam giác vuông

Trực tâm chình là đỉnh góc vuông.

Ví dụ: Tam giác vuông EFG có trực tâm H trùng với góc vuông E.

3. Tam giác tù

Trực tâm nằm ở miền ngoài tam giác đó.

Ví dụ: Tam giác tù BCD có trực tâm H nằm ở miền ngoài tam giác.

Tham khảo thêm:

Các dạng bài tập về đường trực tâm của tam giác từ cơ bản đến nâng cao

Ví dụ 1: Cho tam giác ABC cân tại A, đường trung tuyến AM và đường cao BK. Gọi H là giao điểm của AM và BK. Chứng minh rằng CH vuông góc với AB.

Lời giải:

Vì tam giác ABC cân tại A nên đường trung tuyến AM cũng là đường cao của tam giác ABC.

Ta có H là giao điểm của hai đường cao AM và BK nên H là trực tâm của tam giác ABC

Suy ra CH là đường cao của tam giác ABC

Vậy CH vuông góc với AB.

Ví dụ 2: Cho hình vẽ

a] Chứng minh NS ⊥ LM

b] Khi góc LNP = 50o, hãy tính góc MSP và góc PSQ.

Lời giải:

a] Trong ΔMNL có:

LP ⊥ MN nên LP là đường cao của ΔMNL.

MQ ⊥ NL nên MQ là đường cao của ΔMNL.

Mà LP, MQ cắt nhau tại điểm S

Nên: theo tính chất ba đường cao của một tam giác, S là trực tâm của tam giác.

⇒ đường thẳng SN là đường cao của ΔMNL.

hay SN ⊥ ML.

b] ΔNMQ vuông tại Q có:

Ví dụ 3: Cho tam giác nhọn ABC với trực tâm H. Chứng minh rằng 9 điểm gồm chân ba đường cao; trung điểm ba cạnh và trung điểm các đoạn HA, HB, HC cùng nằm trên một đường tròn.

Lời giải:

Gọi

– I, L, K lần lượt là chân ba đường cao hạ từ 3 đỉnh A, B và C. H là giao điểm ba đường cao.

– D, E, F lần lượt là trung điểm của 3 cạnh AB, BC và AC.

– G, I, J lần lượt là trung điểm của 3 đoạn AH, BH và CH.

Ta có:

– DF là đường trung bình ▲ABC => DF//BC và DF = ½ BC. [1]

– IJ là đường trung bình ▲HBC => IJ//BC và IJ = ½ BC. [2]

Từ [1] và [2] => DFJI là hình bình hành. [3]

Ta có: DI là đường trung bình ▲AHB => DI//AH nên DI//AI.

Mặc khác: AI ┴ BC và IJ//BC.

=> DI vuông góc với IJ. [4]

Từ [3] và [4] ta có DFJI là hình chữ nhật. Tâm đường tròn ngoại tiếp DFJI là O, O là trung điểm DJ. [a]

Tương tự chứng minh GDEJ là hình chữ nhật ngoại tiếp đường tròn tâm O, O là trung điểm DJ. [b]

– GIE vuông tại I, suy ra tâm đường tròn ngoại tiếp ▲GIE là O trung điểm GE. Tương tự O cũng là tâm đường tròn ngoại tiếp ▲JLD và ▲IKF. [c]

Từ [a], [b] và [c] kết luận 9 điểm là chân đường cao, trung điểm các cạnh của ▲ABC và trung điểm 3 đoạn HA, HB, HC cùng nằm trên một đường tròn tâm O.

Hy vọng với những kiến thức về đường trực của tâm tam giác mà chúng tôi vừa chia sẻ có thể giúp bạn nắm được định nghĩa trực tâm là gì và tính chất để vận dụng vào giải các bài tập nhé

Đánh giá bài viết

XEM THÊM

Tính cạnh huyền tam giác vuông và các dạng bài tập có lời giải

Trọng lượng là gì? Công thức tính trọng lượng, khối lượng riêng đầy đủ

Video liên quan

Chủ Đề