Flush IV line with normal saline

1. Baskin J. L., Pui C.-H., Reiss U., et al. Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. The Lancet. 2009;374(9684):159–169. doi: 10.1016/S0140-6736(09)60220-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Ferroni A., Gaudin F., Guiffant G., et al. Pulsative flushing as a strategy to prevent bacterial colonization of vascular access devices. Medical Devices: Evidence and Research. 2014;7:379–383. [PMC free article] [PubMed] [Google Scholar]

3. Infusion Nurses Society. Infusion nursing standards of practice. Journal of Infusion Nursing. 2011;34(1, supplement):S1–S110. doi: 10.1097/01.nan.0000393791.46613.51. [CrossRef] [Google Scholar]

4. Royal College of Nursing IV Therapy Forum. Standards for Infusion Nursing. Royal College of Nursing IV Therapy Forum; 2010. [Google Scholar]

5. Schiffer C. A., Mangu P. B., Wade J. C., et al. Central venous catheter care for the patient with cancer: american Society of Clinical Oncology clinical practice guideline. Journal of Clinical Oncology. 2013;31(10):1357–1370. doi: 10.1200/jco.2012.45.5733. [PubMed] [CrossRef] [Google Scholar]

6. Goossens G. A. Totally implantable venous access devices: malfunction problems unveiled [Ph.D. dissertation] Leuven, Belgium: KU Leuven; 2011. [Google Scholar]

7. Macklin D. What's physics got to do with it? A review of the physical principles of fluid administration. Journal of Vascular Access Devices. 1999;4(2):7–11. doi: 10.2309/108300899775970836. [CrossRef] [Google Scholar]

8. Tingey K. G. A review of silicone and polyurethane material in IV catheters. Journal of Vascular Access Devices. 2000;5(3):14–16. doi: 10.2309/108300800775564286. [CrossRef] [Google Scholar]

9. Smith L. H. Implanted ports, computed tomography, power injectors, and catheter rupture. Clinical Journal of Oncology Nursing. 2008;12(5):809–812. doi: 10.1188/08.cjon.809-812. [PubMed] [CrossRef] [Google Scholar]

10. Vigier J. P., Merckx J., Coquin J. Y., Flaud P., Guiffant G. The use of a hydrodynamic bench for experimental simulation of flushing venous catheters: impact on the technique. Revue Européenne de Technologie Biomédicale. 2005;26(2):147–149. doi: 10.1016/j.rbmret.2005.03.001. [CrossRef] [Google Scholar]

11. Guiffant G., Durussel J. J., Merckx J., Flaud P., Vigier J. P., Mousset P. Flushing of intravascular access devices (IVADS)—efficacy of pulsed and continuous infusions. Journal of Vascular Access. 2013;13(1):75–78. doi: 10.5301/jva.2011.8487. [PubMed] [CrossRef] [Google Scholar]

12. Douard M. C., Clement E., Arlet G., et al. Negative catheter-tip culture and diagnosis of catheter-related bacteremia. Nutrition. 1994;10(5):397–404. [PubMed] [Google Scholar]

13. Brouns F., Schuermans A., Verhaegen J., De Wever I., Stas M. Infection assessment of totally implanted long-term venous access devices. Journal of Vascular Access. 2006;7(1):24–28. [PubMed] [Google Scholar]

14. Dalton M., Pheil N., Lacy J., Dalton J. Does sludge/debris exist in today's vascular access ports? Journal of the Association for Vascular Access. 2014;19(1):23–26. doi: 10.1016/j.java.2013.12.002. [CrossRef] [Google Scholar]

15. Dalton M., Pheil N., Lacy J., Dalton J. The port clearance test: why it is important to clinicians. Journal of the Association for Vascular Access. 2014;19(1):42–46. doi: 10.1016/j.java.2013.11.002. [CrossRef] [Google Scholar]

16. Penel N., Neu J.-C., Clisant S., Hoppe H., Devos P., Yazdanpanah Y. Risk factors for early catheter-related infections in cancer patients. Cancer. 2007;110(7):1586–1592. doi: 10.1002/cncr.22942. [PubMed] [CrossRef] [Google Scholar]

17. Shearer J. Normal saline flush versus dilute heparin flush. National Intravenous Therapy Association. 1987:425–427. [PubMed] [Google Scholar]

18. Guiffant G., Flaud P., Dantan P., Dupont C., Merckx J. Incidence of the curvature of a catheter on the variations of the inner volume: application to the peripherally central catheters. ISRN Vascular Medicine. 2012;2012:6. doi: 10.5402/2012/803128.803128 [CrossRef] [Google Scholar]

19. Lapalu J., Losser M.-R., Albert O., et al. Totally implantable port management: impact of positive pressure during needle withdrawal on catheter tip occlusion (an experimental study) Journal of Vascular Access. 2010;11(1):46–51. [PubMed] [Google Scholar]

20. Goossens G. A., Jérôme M., Janssens C., et al. Comparing normal saline versus diluted heparin to lock non-valved totally implantable venous access devices in cancer patients: a randomised, non-inferiority, open trial. Annals of Oncology. 2013;24(7):1892–1899. doi: 10.1093/annonc/mdt114.mdt114 [PubMed] [CrossRef] [Google Scholar]

21. Polaschegg H.-D., Shah C. Overspill of catheter locking solution: safety and efficacy aspects. American Society for Artificial Internal Organs Journal. 2003;49(6):713–715. doi: 10.1097/01.mat.0000094040.54794.2d. [PubMed] [CrossRef] [Google Scholar]

22. Polaschegg H.-D. Catheter locking solution spillage: theory and experimental verification. Blood Purification. 2008;26(3):255–260. doi: 10.1159/000123706. [PubMed] [CrossRef] [Google Scholar]

23. Sona C., Prentice D., Schallom L. National survey of central venous catheter flushing in the intensive care unit. Critical Care Nurse. 2012;32(1):12–19. doi: 10.4037/ccn2012296. [PubMed] [CrossRef] [Google Scholar]

24. Kefeli U., Dane F., Yumuk P. F., et al. Prolonged interval in prophylactic heparin flushing for maintenance of subcutaneous implanted port care in patients with cancer. European Journal of Cancer Care. 2009;18(2):191–194. doi: 10.1111/j.1365-2354.2008.00973.x. [PubMed] [CrossRef] [Google Scholar]

25. Palese A., Baldassar D., Rupil A., et al. Maintaining patency in totally implantable venous access devices (TIVAD): a time-to-event analysis of different lock irrigation intervals. European Journal of Oncology Nursing. 2014;18(1):66–71. doi: 10.1016/j.ejon.2013.09.002. [PubMed] [CrossRef] [Google Scholar]

26. Debb E. N., DiMattia P. E. Standardization of heparin lock maintenance solution. The New England Journal of Medicine. 1976;294(8):p. 448. [PubMed] [Google Scholar]

27. Hanson R. L., Grant A. M., Majors K. R. Heparin lock maintenance with ten units of sodium heparin in one milliliter of normal saline solution. Surgery Gynecology and Obstetrics. 1976;142(3):373–376. [PubMed] [Google Scholar]

28. Passannante A., Macik B. G. The heparin flush syndrome: a cause of iatrogenic hemorrhage. American Journal of the Medical Sciences. 1988;296(1):71–73. doi: 10.1097/00000441-198807000-00014. [PubMed] [CrossRef] [Google Scholar]

29. Garcia D. A., Baglin T. P., Weitz J. I., Samama M. M. Parenteral anticoagulants: antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141(2, supplement):e24S–e43S. doi: 10.1378/chest.11-2291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Horne M. K., III, McCloskey D. J., Calis K., Wesley R., Childs R., Kasten-Sportes C. Use of heparin versus lepirudin flushes to prevent withdrawal occlusion of central venous access devices. Pharmacotherapy. 2006;26(9 I):1262–1267. doi: 10.1592/phco.26.9.1262. [PubMed] [CrossRef] [Google Scholar]

31. Toft B. The dangers of heparin flushes. Postgraduate Medical Journal. 2010;86(1012):65–66. doi: 10.1136/qshc.2008.028324. [PubMed] [CrossRef] [Google Scholar]

32. Kambal A., Najem M., Hussain T. S. Multi-dosage vials, potential for overdose. British Journal of Clinical Pharmacology. 2004;58(6):p. 677. doi: 10.1111/j.1365-2125.2004.02216.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Misra S., Koshy T., Sinha P. Identical drug packaging: heparin and midazolam-yet another instance of similar drug packaging. Annals of Cardiac Anaesthesia. 2009;12(1):88–89. doi: 10.4103/0971-9784.45024. [PubMed] [CrossRef] [Google Scholar]

34. Niccolai C. S., Hicks R. W., Oertel L., Francis J. L. Unfractionated heparin: focus on a high-alert drug. Pharmacotherapy. 2004;24(8, part 2):146S–155S. doi: 10.1592/phco.24.12.146s.36107. [PubMed] [CrossRef] [Google Scholar]

35. Refaai M. A., Warkentin T. E., Axelson M., Matevosyan K., Sarode R. Delayed-onset heparin-induced thrombocytopenia, venous thromboembolism, and cerebral venous thrombosis: a consequence of heparin ‘flushes’ Thrombosis and Haemostasis. 2007;98(5):1139–1140. doi: 10.1160/th07-06-0423. [PubMed] [CrossRef] [Google Scholar]

36. Garajová I., Nepoti G., Paragona M., Brandi G., Biasco G. Port-a-Cath-related complications in 252 patients with solid tissue tumours and the first report of heparin-induced delayed hypersensitivity after Port-a-Cath heparinisation. European Journal of Cancer Care. 2013;22(1):125–132. doi: 10.1111/ecc.12008. [PubMed] [CrossRef] [Google Scholar]

37. Muslimani A. A., Ricaurte B., Daw H. A. Immune heparin-induced thrombocytopenia resulting from preceding exposure to heparin catheter flushes. The American Journal of Hematology. 2007;82(7):652–655. doi: 10.1002/ajh.20849. [PubMed] [CrossRef] [Google Scholar]

38. Lovecchio F. Heparin-induced thrombocytopenia. Clinical Toxicology. 2014;52(6):579–583. doi: 10.3109/15563650.2014.917181. [PubMed] [CrossRef] [Google Scholar]

39. Shanks R. M. Q., Sargent J. L., Martinez R. M., Graber M. L., O'Toole G. A. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrology Dialysis Transplantation. 2006;21(8):2247–2255. doi: 10.1093/ndt/gfl170. [PubMed] [CrossRef] [Google Scholar]

40. Liu D., Zhang L.-P., Huang S.-F., et al. Outbreak of Serratia marcescens infection due to contamination of multiple-dose vial of heparin-saline solution used to flush deep venous catheters or peripheral trocars. Journal of Hospital Infection. 2011;77(2):175–176. doi: 10.1016/j.jhin.2010.10.003. [PubMed] [CrossRef] [Google Scholar]

41. Dias M. B. S., Habert A. B., Borrasca V., et al. Salvage of long-term central venous catheters during an outbreak of Pseudomonas putida and Stenotrophomonas maltophilia infections associated with contaminated heparin catheter-lock solution. Infection Control and Hospital Epidemiology. 2008;29(2):125–130. doi: 10.1086/526440. [PubMed] [CrossRef] [Google Scholar]

42. Registered Nurses' Association of Ontario. Care and Maintenance to Reduce Vascular Access Complications, Guideline supplement. 2008.

43. OCEBM Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence. OCEBM Levels of Evidence Working Group, Oxford Centre for Evidence-Based Medicine; 2014. [Google Scholar]

44. Goode C. J., Titler M., Rakel B., et al. A meta-analysis of effects of heparin flush and saline flush: quality and cost implications. Nursing Research. 1991;40(6):324–330. [PubMed] [Google Scholar]

45. Peterson F. Y., Kirchhoff K. T. Analysis of the research about heparinized versus nonheparinized intravascular lines. Heart & Lung: Journal of Critical Care. 1991;20(6):631–642. [PubMed] [Google Scholar]

46. Randolph A. G., Cook D. J., Gonzales C. A., Andrew M. Benefit of heparin in peripheral venous and arterial catheters: systematic review and meta-analysis of randomised controlled trials. British Medical Journal. 1998;316(7136):969–975. doi: 10.1136/bmj.316.7136.969. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Gyr P., Burroughs T., Smith K., Mahl C., Pontious S., Swerczek L. Double blind comparison of heparin and saline flush solutions in maintenance of peripheral infusion devices. Pediatric Nursing. 1995;21(4):383–389, 366. [PubMed] [Google Scholar]

48. LeDuc K. Efficacy of normal saline solution versus heparin solution for maintaining patency of peripheral intravenous catheters in children. Journal of Emergency Nursing. 1997;23(4):306–309. doi: 10.1016/s0099-1767(97)90216-6. [PubMed] [CrossRef] [Google Scholar]

49. Niesen K. M., Harris D. Y., Parkin L. S., Henn L. T. The effects of heparin versus normal saline for maintenance of peripheral intravenous locks in pregnant women. Journal of Obstetric, Gynecologic, and Neonatal Nursing. 2003;32(4):503–508. doi: 10.1177/0884217503255203. [PubMed] [CrossRef] [Google Scholar]

50. Mok E., Kwong T. K., Chan M. F. A randomized controlled trial for maintaining peripheral intravenous lock in children. International Journal of Nursing Practice. 2007;13(1):33–45. doi: 10.1111/j.1440-172x.2006.00607.x. [PubMed] [CrossRef] [Google Scholar]

51. White M. L., Crawley J., Rennie E. A., Lewandowski L. A. Examining the effectiveness of 2 solutions used to flush capped pediatric peripheral intravenous catheters. Journal of Infusion Nursing. 2011;34(4):260–270. doi: 10.1097/nan.0b013e31821da29a. [PubMed] [CrossRef] [Google Scholar]

52. Bertolino G., Pitassi A., Tinelli C., et al. Intermittent flushing with heparin versus saline for maintenance of peripheral intravenous catheters in a medical department: a pragmatic cluster-randomized controlled study. Worldviews on Evidence-Based Nursing. 2012;9(4):221–226. doi: 10.1111/j.1741-6787.2012.00244.x. [PubMed] [CrossRef] [Google Scholar]

53. Randolph A. G., Cook D. J., Gonzalez C. A., Andrew M. Benefit of heparin in central venous and pulmonary artery catheters: a meta-analysis of randomized controlled trials. Chest. 1998;113(1):165–171. doi: 10.1378/chest.113.1.165. [PubMed] [CrossRef] [Google Scholar]

54. Rabe C., Gramann T., Sons X., et al. Keeping central venous lines open: a prospective comparison of heparin, vitamin C and sodium chloride sealing solutions in medical patients. Intensive Care Medicine. 2002;28(8):1172–1176. doi: 10.1007/s00134-002-1379-2. [PubMed] [CrossRef] [Google Scholar]

55. Schallom M. E., Prentice D., Sona C., Micek S. T., Skrupky L. P. Heparin or 0.9% sodium chloride to maintain central venous catheter patency: a randomized trial. Critical Care Medicine. 2012;40(6):1820–1826. doi: 10.1097/ccm.0b013e31824e11b4. [PubMed] [CrossRef] [Google Scholar]

56. Bowers L., Speroni K. G., Jones L., Atherton M. Comparison of occlusion rates by flushing solutions for peripherally inserted central catheters with positive pressure luer-activated devices. Journal of Infusion Nursing. 2008;31(1):22–27. doi: 10.1097/01.nan.0000308542.90615.c2. [PubMed] [CrossRef] [Google Scholar]

57. Lyons M. G., Phalen A. G. A randomized controlled comparison of flushing protocols in home care patients with peripherally inserted central catheters. Journal of Infusion Nursing. 2014;37(4):270–281. doi: 10.1097/nan.0000000000000050. [PubMed] [CrossRef] [Google Scholar]

58. Smith S., Dawson S., Hennessey R., Andrew M. Maintenance of the patency of indwelling central venous catheters: is heparin necessary? The American Journal of Pediatric Hematology/Oncology. 1991;13(2):141–143. doi: 10.1097/00043426-199122000-00005. [PubMed] [CrossRef] [Google Scholar]

59. Hoffer E. K., Borsa J., Santulli P., Bloch R., Fontaine A. B. Prospective randomized comparison of valved versus nonvalved peripherally inserted central vein catheters. American Journal of Roentgenology. 1999;173(5):1393–1398. doi: 10.2214/ajr.173.5.10541127. [PubMed] [CrossRef] [Google Scholar]

60. Carlo J. T., Lamont J. P., McCarty T. M., Livingston S., Kuhn J. A. A prospective randomized trial demonstrating valved implantable ports have fewer complications and lower overall cost than nonvalved implantable ports. The American Journal of Surgery. 2004;188(6):722–727. doi: 10.1016/j.amjsurg.2004.08.041. [PubMed] [CrossRef] [Google Scholar]

61. Cesaro S., Tridello G., Cavaliere M., et al. Prospective, randomized trial of two different modalities of flushing central venous catheters in pediatric patients with cancer. Journal of Clinical Oncology. 2009;27(12):2059–2065. doi: 10.1200/JCO.2008.19.4860. [PubMed] [CrossRef] [Google Scholar]

62. Biffi R., de Braud F., Orsi F., et al. A randomized, prospective trial of central venous ports connected to standard open-ended or Groshong catheters in adult oncology patients. Cancer. 2001;92(5):1204–1212. doi: 10.1002/1097-0142(20010901)92:560;1204::aid-cncr143962;3.0.co;2-9. [PubMed] [CrossRef] [Google Scholar]

63. Buehrle D. C. A prospective, randomized comparison of three needleless IV systems used in conjunction with peripherally inserted central catheters. Journal of the Association for Vascular Access. 2004;9(1):35–38. doi: 10.2309/155288504774596752. [CrossRef] [Google Scholar]

64. Khalidi N., Kovacevich D. S., Papke-O'Donnell L. F., Btaiche I. Impact of the positive pressure valve on vascular access device occlusions and bloodstream infections. Journal of the Association for Vascular Access. 2009;14(2):84–91. doi: 10.2309/java.14-2-6. [CrossRef] [Google Scholar]

65. Mitchell M. D., Anderson B. J., Williams K., Umscheid C. A. Heparin flushing and other interventions to maintain patency of central venous catheters: a systematic review. Journal of Advanced Nursing. 2009;65(10):2007–2021. doi: 10.1111/j.1365-2648.2009.05103.x. [PubMed] [CrossRef] [Google Scholar]

66. Dal Molin A., Allara E., Montani D., et al. Flushing the central venous catheter: is heparin necessary? The Journal of Vascular Access. 2014;15(4):241–248. doi: 10.5301/jva.5000225. [PubMed] [CrossRef] [Google Scholar]

67. Lopez-Briz E., Ruiz G., Cabello V. J. B., Bort-Marti S., Carbonell S. R., Burls A. Heparin versus 0.9% sodium chloride intermittent flushing for prevention of occlusion in central venous catheters in adults. The Cochrane Database of Systematic Reviews. 2014;10 doi: 10.1002/14651858.CD008462.pub2.CD008462 [PubMed] [CrossRef] [Google Scholar]

68. Kethireddy S., Safdar N. Urokinase lock or flush solution for prevention of bloodstream infections associated with central venous catheters for chemotherapy: a meta-analysis of prospective randomized trials. The Journal of Vascular Access. 2008;9(1):51–57. [PubMed] [Google Scholar]

69. Solomon B., Moore J., Arthur C., Prince H. M. Lack of efficacy of twice-weekly urokinase in the prevention of complications associated with Hickman catheters: a multicentre randomised comparison of urokinase versus heparin. European Journal of Cancer. 2001;37(18):2379–2384. doi: 10.1016/s0959-8049(01)00320-3. [PubMed] [CrossRef] [Google Scholar]

70. Dillon P. W., Jones G. R., Bagnall-Reeb H. A., Buckley J. D., Wiener E. S., Haase G. M. Prophylactic urokinase in the management of long-term venous access devices in children: a Children's Oncology Group study. Journal of Clinical Oncology. 2004;22(13):2718–2723. doi: 10.1200/jco.2004.07.019. [PubMed] [CrossRef] [Google Scholar]

71. Mermel L. A. What is the predominant source of intravascular catheter infections? Clinical Infectious Diseases. 2011;52(2):211–212. doi: 10.1093/cid/ciq108. [PubMed] [CrossRef] [Google Scholar]

72. Ryder M. Evidence-based practice in the management of vascular access devices for home parenteral nutrition therapy. Journal of Parenteral and Enteral Nutrition. 2006;30(1, supplement):S82–S93. doi: 10.1177/01486071060300s1s82. [PubMed] [CrossRef] [Google Scholar]

73. Donlan R. M. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clinical Infectious Diseases. 2011;52(8):1038–1045. doi: 10.1093/cid/cir077. [PubMed] [CrossRef] [Google Scholar]

74. Messing B., Peitra-Cohen S., Debure A., Beliah M., Bernier J.-J. Antibiotic-lock technique: a new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. Journal of Parenteral and Enteral Nutrition. 1988;12(2):185–189. doi: 10.1177/0148607188012002185. [PubMed] [CrossRef] [Google Scholar]

75. Bookstaver P. B., Rokas K. E. E., Norris L. B., Edwards J. M., Sherertz R. J. Stability and compatibility of antimicrobial lock solutions. American Journal of Health-System Pharmacy. 2013;70(24):2185–2198. doi: 10.2146/ajhp120119. [PubMed] [CrossRef] [Google Scholar]

76. Snaterse M., Rüger W., Scholte op Reimer W. J. M., Lucas C. Antibiotic-based catheter lock solutions for prevention of catheter-related bloodstream infection: a systematic review of randomised controlled trials. Journal of Hospital Infection. 2010;75(1):1–11. doi: 10.1016/j.jhin.2009.12.017. [PubMed] [CrossRef] [Google Scholar]

77. van de Wetering M. D., van Woense J. B., Lawrie T. A. Prophylactic antibiotics for preventing Gram positive infections associated with long-term central venous catheters in oncology patients. The Cochrane Database of Systematic Reviews. 2013;(11) doi: 10.1002/14651858.CD003295.pub3.CD003295 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. O'Grady N. P., Alexander M., Burns L. A., et al. Summary of recommendations: guidelines for the Prevention of Intravascular Catheter-related Infections. Clinical Infectious Diseases. 2011;52(9):1087–1099. doi: 10.1093/cid/cir138. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Hoffman L. R., D'Argenio D. A., MacCoss M. J., Zhang Z., Jones R. A., Miller S. I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–1175. doi: 10.1038/nature03912. [PubMed] [CrossRef] [Google Scholar]

80. Sauer K., Steczko J., Ash S. R. Effect of a solution containing citrate/Methylene Blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. Journal of Antimicrobial Chemotherapy. 2009;63(5):937–945. doi: 10.1093/jac/dkp060. [PubMed] [CrossRef] [Google Scholar]

81. Raad I., Rosenblatt J., Reitzel R., Jiang Y., Dvorak T., Hachem R. Chelator-based catheter lock solutions in eradicating organisms in biofilm. Antimicrobial Agents and Chemotherapy. 2013;57(1):586–588. doi: 10.1128/AAC.01287-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Tan M., Lau J., Guglielmo B. J. Ethanol locks in the prevention and treatment of catheter-related bloodstream infections. Annals of Pharmacotherapy. 2014;48(5):607–615. doi: 10.1177/1060028014524049. [PubMed] [CrossRef] [Google Scholar]

83. Worth L. J., Slavin M. A., Heath S., Szer J., Grigg A. P. Ethanol versus heparin locks for the prevention of central venous catheter-associated bloodstream infections: a randomized trial in adult haematology patients with Hickman devices. Journal of Hospital Infection. 2014;88(1):48–51. doi: 10.1016/j.jhin.2014.06.007. [PubMed] [CrossRef] [Google Scholar]

84. Mermel L. A., Alang N. Adverse effects associated with ethanol catheter lock solutions: a systematic review. Journal of Antimicrobial Chemotherapy. 2014;69(10):2611–2619. doi: 10.1093/jac/dku182. [PubMed] [CrossRef] [Google Scholar]

85. Schilcher G., Schlagenhauf A., Schneditz D., et al. Ethanol causes protein precipitation—new safety issues for catheter locking techniques. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0084869.e84869 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Rosenblatt J., Reitzel R., Dvorak T., Jiang Y., Hachem R. Y., Raad I. I. Glyceryl trinitrate complements citrate and ethanol in a novel antimicrobial catheter lock solution to eradicate biofilm organisms. Antimicrobial Agents and Chemotherapy. 2013;57(8):3555–3560. doi: 10.1128/aac.00229-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Olthof E. D., Nijland R., Gülich A. F., Wanten G. J. A. Microbiocidal effects of various taurolidine containing catheter lock solutions. Clinical Nutrition. 2014 doi: 10.1016/j.clnu.2014.04.023. [PubMed] [CrossRef] [Google Scholar]

88. Traub W. H., Leonhard B., Bauer D. Taurolidine: in vitro activity against multiple-antibiotic-resistant, nosocomially significant clinical isolates of Staphylococcus aureus, Enterococcus faecium, and diverse Enterobacteriaceae . Chemotherapy. 1993;39(5):322–330. doi: 10.1159/000239144. [PubMed] [CrossRef] [Google Scholar]

89. Liu Y., Zhang A.-Q., Cao L., Xia H.-T., Ma J.-J. Taurolidine lock solutions for the prevention of catheter-related bloodstream infections: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0079417.e79417 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Dümichen M. J., Seeger K., Lode H. N., et al. Randomized controlled trial of taurolidine citrate versus heparin as catheter lock solution in paediatric patients with haematological malignancies. Journal of Hospital Infection. 2012;80(4):304–309. doi: 10.1016/j.jhin.2012.01.003. [PubMed] [CrossRef] [Google Scholar]

91. Handrup M. M., Møller J. K., Schrøder H. Central venous catheters and catheter locks in children with cancer: a prospective randomized trial of taurolidine versus heparin. Pediatric Blood & Cancer. 2013;60(8):1292–1298. doi: 10.1002/pbc.24482. [PubMed] [CrossRef] [Google Scholar]

Do you flush IV with normal saline?

Usually, the flush solution is normal saline. This is a sterile solution of salt and water. If instructed, also flush with a heparin solution after the second saline flushing.

How much saline do you use to flush IV?

Ten mL of NS is commonly assumed as an adequate flushing volume in IV catheters.

What are the most important things to remember when flushing an IV line?

Flushing an IV Catheter.
Prepare your supplies. Clean your hands with soap and water or alcohol-based hand sanitizer. Do this before you lay out your supplies on the work surface. ... .
Flush the catheter. Clean the injection cap on your catheter, using disinfectant wipes or other supplies, as directed by your healthcare team..