Long đen pw và spw cơ khí nghĩa là gì năm 2024

Nồi hấp điện là một trong những đồ gia dụng không thể thiếu trong căn phòng bếp nhà bạn. Đây được xem là món đồ hấp chín đồ ăn, giúp cho món ăn luôn giữ được hương vị, đảm bảo đầy đủ các chất dinh dưỡng mà không tốn quá nhiều thời gian.

Khi bạn sở hữu máy hấp bằng điện thì việc chế biến món ăn trở nên đơn giản và ăn uống của bạn sẽ trở nên lành mạnh hơn. Sau đây chúng ta cùng tìm hiểu về máy hấp điện.

Máy Hấp Điện là gì ?

Máy hấp điện là thiết bị dành cho gia đình dùng để chế biến thức ăn dựa trên nguyên lý hoạt động đó biến điện năng thành nhiệt năng. Hay nói cách khác đó chính là làm chín thức ăn bằng sức nóng hơi nước hay còn gọi đó là phương pháp hấp cách thuỷ.

Máy hấp điện sẽ giúp giữ nóng thức ăn trong xửng hấp, ngăn hấp sẽ không tiếp xúc với nước giúp dinh dưỡng thực phẩm hấp không hề mất đi.

Máy hấp điện được thiết kế với lớp vỏ cách nhiệt bằng nhựa hoặc kim loại tạo ra không gian kín không để cho hơi nước thoát ra ngoài từ đó các món ăn của bạn giữ được nguyên vị.

Máy hấp hiện nay có nhiều 2-3 tầng cho phép bạn hấp nhiều thực phẩm khác nhau, kèm với chế độ thông minh như hẹn giờ nấu ăn, bảng điều khiển giúp bạn nấu ăn một cách nhanh chóng mà được nhiều món ăn khác nhau.

Các ưu điểm Máy Hấp Điện

  • Đảm bảo chất dinh dưỡng: Trong quá trình hấp, chế biến món ăn thực phẩm sẽ không bị hoà tan với nước. Màu sắc thức ăn hấp dẫn, hương vị thơm ngon giúp bạn có món ăn tuyệt hảo. Ngoài ra khi ăn những món hấp sẽ hạn chế Cholesterol xấu, ngăn ngừa bệnh tật.
  • Chế biến nhiều món ăn khác nhau: Thịt, cá, trứng, sữa, gà, thực phẩm…. là những món bạn có thể hấp bằng máy điện. Nếu bạn muốn thay những món xào, chiên nhiều dầu mỡ thì máy hấp điện là lựa chọn hợp lý.
  • Tiết kiệm thời gian: Đối với các phương pháp khác như chiên, quay, nướng bạn dành ra thời gian đáng kể để chuẩn bị món ăn và chế biến. Với máy hấp thì khác, bạn sẽ chuẩn bị đơn giản hơn, sơ chế nguyên liệu, ướp gia vị vào nồi hấp, hẹn giờ là xong. Trong khoảng thời gian đó bạn có thể thư giãn, làm công việc khác và sau đó tận hưởng món ăn.

Thương hiệu Máy Hấp Điện Panworld

Nếu bạn còn phân vân chưa biết sử dụng thương hiệu nào, thì hãy chọn sản phẩm Panworld. Sản phẩm của chúng tôi luôn chất lượng, đảm bảo các tiêu chí an toàn cho người sử dụng. Những điều sau đây giúp bạn yên tâm hơn khi mua máy hấp Panworld:

  • Dung tích lớn: máy hấp điện Panworld có tới 3 tầng hấp dung tích lên đến 19 lít giúp bạn có thể chế biến nhiều món ăn mà không tốn thời gian nhiều trong bếp. Nhiều gợi ý thú vị dành cho các bà nội trợ là có thể hấp đầy đủ các loại thực phẩm mà không cần phải thay nồi nhiều lần như: hải sản, thịt gà, rau củ quả,
  • Dung tích bình chứa nước lớn 1,7 lít đáp ứng nhu cầu hấp trong vòng 1 giờ. Vì thế bạn không cần phải châm nước thường xuyên, giúp cho công việc bếp núc của bạn sẽ trở nên một cách dễ dàng.
  • Công dụng đa năng: Ngoài hấp ra máy còn có thể sử dụng khử trùng làm sạch các đồ vật gia đình, khử mùi khó chịu. Một số đồ vật gợi ý cho bạn như: muỗng đũa, chén dĩa, dụng cụ bào cắt, bình sữa, đồ chơi em bé,…
  • Thiết kế gấp gọn thông minh tiết kiệm không gian nhà bếp, sẽ là lựa chọn tối ưu. Bạn có thể mang đi du lịch, ăn nhậu cùng bạn bè, hoặc để 1 góc trong nhà bếp mà không lo sợ bụi bặm.
  • Chất liệu nhựa tốt cao cấp kết hợp cùng inox 304 chịu nhiệt tốt: giúp bạn dễ dàng lâu chùi. Các tấm ngăn giữa được làm từ vật liệu PPO (an toàn với sức khỏe người dùng) cùng thiết kế các lỗ nhỏ cho hơi nước bốc lên giúp làm chín thực phẩm đều hơn.Ở dưới cùng sẽ là lớp thép không gỉ 304 có khả năng chịu nhiệt cao mà không bị biến dạng.
  • Công nghệ làm nóng nhỏ giọt, giúp tiết kiệm nước, không cần thêm nước thường xuyên. Giúp bạn cũng tiết kiệm nước cho gia đình khi nấu ăn.

Điều tuyệt vời khi bạn sử dụng sản phẩm của chúng tôi, chúng tôi sẽ đồng hành cùng bạn. Nếu bạn cảm thấy khó khăn khi sử dụng sản phẩm.

Năm 1781, Carl Wilhelm Scheele phát hiện một acid mới là acid wolframic, có thể được chiết từ scheelite (lúc đó có tên là tungstenit). Scheele và Torbern Bergman cho rằng nó có thể tạo ra một kim loại mới bằng cách oxy hóa acid này. Năm 1783, José và Fausto Elhuyar tìm thấy một acid được chế từ wolframit, được xác định là acid wolframic. Sau năm đó, ở Tây Ban Nha, họ đã thành công khi cô lập wolfram bằng cách oxy hóa acid này với than củi, và họ được ghi công đã phát hiện ra nguyên tố này.

Trong chiến tranh thế giới thứ hai, wolfram đóng vai trò quan trọng trong các giao dịch chính trị (background). Bồ Đào Nha, khi đó là nguồn cung cấp chủ yếu nguyên tố này ở châu Âu, phải chịu áp lực từ cả hai phía do họ sở hữu các mỏ quặng wolframit. Wolfram chịu được các điều kiện nhiệt độ cao và độ bền của nó trong các hợp kim làm cho nó trở thành một nguyên liệu thô quan trọng trong công nghiệp vũ khí.

Từ nguyên[sửa | sửa mã nguồn]

Trong thế kỷ XVI, nhà khoáng vật học Georgius Agricola đã miêu tả Freiberger, khoáng vật có mặt trong quặng thiếc ở Saxon, gây khó khăn trong việc tuyển nổi thiếc khỏi quặng thiếc. Một phần của tên gọi "Wolf" có nguồn gốc từ đây. Ông gọi khoáng vật này là lupi spuma năm 1546, nghĩa Latin là "nước bọt sói". RAM trong tiếng Đức cổ (tương ứng khoảng năm 1050 đến 1350) nghĩa là "muội than, dơ", khi ở dạng khoáng vật màu đen xám có thể dễ nghiền và thường được gọi là cacbon đen.

Tên gọi "wolfram" được dùng đa số ở châu Âu (đặc biệt là tiếng Đức và Slav), có nguồn gốc từ khoáng vật wolframit, và tên gọi này cũng được dùng làm ký hiệu nguyên tố hóa học này W. Tên gọi "wolframit" xuất phát từ tiếng Đức "wolf rahm" ("mồ hóng của chó sói" hay "kem của chó sói"), tên gọi này được Johan Gottschalk Wallerius đổi thành tungsten năm 1747. Tên gọi này, tới lượt mình, có nguồn gốc từ "Lupi spuma", một tên gọi được Georg Agricola sử dụng từ năm 1546 để chỉ nguyên tố này, có nghĩa là "váng bọt của chó sói" hay "kem của chó sói" (từ nguyên không chắc chắn hoàn toàn), và nó ám chỉ tới một lượng lớn thiếc được sử dụng để tách kim loại này ra khỏi khoáng vật chứa nó.

Từ "tungsten" được sử dụng trong tiếng Anh, Pháp và một số ngôn ngữ khác để chỉ tên của nguyên tố. Tungsten là tên Thụy Điển cũ được dùng để chỉ khoáng vật scheelit.

IUPAC đặt tên nguyên tố 74 là tungsten với ký hiệu W. Tên thay thế wolfram bị loại bỏ trong phiên bản mới nhất của sách Đỏ (Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005) mặc dù việc loại bỏ này đã được thảo luận chủ yếu bởi các thành viên IUPAC Tây Ban Nha. Tên Wolfram đã được IUPAC chính thức thay thế bằng tungsten tại hội nghị lần thứ 15 của tổ chức này tại Amsterdam năm 1949.

  • Long đen pw và spw cơ khí nghĩa là gì năm 2024

Tính chất[sửa | sửa mã nguồn]

Tính chất vật lý[sửa | sửa mã nguồn]

Ở dạng thô, wolfram là kim loại có màu xám thép, thường giòn và cứng khi gia công, nhưng nếu tinh khiết nó rất dễ gia công. Nó được gia công bằng các phương pháp rèn, kéo, ép tạo hình. Trong tất cả kim loại nguyên chất, wolfram có điểm nóng chảy cao nhất (3.422 °C, 6.192 °F), áp suất hơi thấp nhất, (ở nhiệt độ trên 1.650 °C, 3.000 °F) độ bền kéo lớn nhất. và hệ số giãn nở nhiệt thấp nhất. Độ giãn nở nhiệt thấp, điểm nóng chảy và độ bền cao của wolfram là do các liên kết cộng hóa trị mạnh hình thành giữa các nguyên tử wolfram bởi các electron lớp 5d. Hợp kim pha một lượng nhỏ wolfram của thép làm tăng mạnh tính dẻo của nó.

Wolfram tồn tại ở hai dạng tinh thể chính: α và β. Dạng α có cấu trúc tinh thể lập phương tâm khối và là một dạng bền. cấu trúc của tinh thể dạng β được gọi là lập phương A15; là một dạng kích thích, nhưng có thể đồng tồn tại với pha α ở các điều kiện phòng do sự tổng hợp không cân bằng hoặc sự ổn định hóa bởi các tạp chất. Trái ngược với dạng α có các tinh thể là các hạt có kích thước bằng nhau theo mọi hướng còn dạng β có tập hợp dạng trụ. Dạng α có điện trở thấp hơn dạng β 3 lần và thấp hơn nhiều nếu nó ở nhiệt độ chuyển tiếp siêu dẫn TC so với dạng β: khoảng 0,015 K vs. 1-4 K; hỗn hợp của 2 dạng này cho phép tạo ra các giá trị TC trung gian. Giá trị TC cũng có thể được gia tăng bằng cách tạo hợp kim wolfram với các kim loại khác (như 7,9 K đối với W-Tc). Các hợp kim wolfram này đôi khi được sử dụng trong các mạch siêu dẫn nhiệt độ thấp.

Đồng vị[sửa | sửa mã nguồn]

Wolfram tự nhiên gồm 5 đồng vị với chu kỳ bán rã đủ lâu nên chúng được xem là các đồng vị bền. Về mặt lý thuyết, tất cả năm đồng vị có thể phân rã thành các đồng vị của nguyên tố 72 (hafni) bằng phân rã alpha, nhưng chỉ có 180W là được quan sát là có chu kỳ bán rã (1,8 ± 0,2)×1018 yr; trung bình, nó có hai phân rã anpha của 180W trong một gram wolfram tự nhiên/năm. Các đồng vị tự nhiên khác chưa được quan sát phân rã, nhưng chu kỳ bán rã của các đồng vị được hạn chế ở mức như sau

182W, T1/2 > 8.3×1018 năm 183W, T1/2 > 29×1018 năm 184W, T1/2 > 13×1018 năm 186W, T1/2 > 27×1018 năm

30 đồng vị phóng xạ nhân tạo khác của wolfram đã được miêu tả, đồng vị bền nhất là 181W có chu kỳ bán rã 121,2 ngày, 185W là 75,1 ngày, 188W là 69,4 ngày, 178W là 21,6 ngày, và 187W là 23,72 giờ. Tất cả các đồng vị phóng xạ còn lại có chu kỳ bán rã nhỏ hơn 3 giờ, và đá số trong đó có chu kỳ bán rã nhỏ hơn 8 phút. Wolfram có 4 meta state, ổn định nhất là 179mW (T½ 6,4 phút).

Tính chất hóa học[sửa | sửa mã nguồn]

Wolfram nguyên tố có khả năng chống oxy hóa, acid, và kiềm.

Trạng thái oxy hóa phổ biến nhất của wolfram là +6, nhưng có thể thay đổi từ −2 đến +6. Wolfram đặc biệt kết hợp với oxy tạo thành wolfram trioxide, WO3 màu vàng, hòa tan trong dung dịch kiềm tạo thành ion wolfram WO2− 4.

Wolfram cacbic (W2C và WC) được sản xuất bằng cách nung bột wolfram với cacbon và là những cacbic cứng nhất, WC có điểm nóng chảy 2.770 °C và 2.780 °C đối với W2C. WC là chất dẫn điện hiệu quả, nhưng W2C thì ít hơn. Wolfram cacbic có ứng xử tương tự wolfam không ở dạng hợp kim và có khả năng chống lại ăn mòn hóa học, mặc dù nó phản ứng mạnh với clo tạo thành wolfram hexaclorua (WCl6).

Dung dịch wolfram trong nước được ghi nhận là để tạo thành acid heteropoly và các anion polyoxometalat trong các môi trường trung hòa và acid. Khi wolfamat được xử lý từ từ bằng acid, đầu tiên nó hòa tan, anion "parawolfarmat A" metastable, W 7O6- 24, dần dần nó chuyển sang dạng anion ít hòa tan hơn "parawolframat B", H 2W 12O10-

  1. Quá trình acid hóa sau đó tạo ra các anion netawolframat hòa tan rất cao, H 2W 12O6- 40, sau đó đạt đến trạng thái cân bằng. Ion metawolframat tồn tại ở dạng cụm hình học của hình bát diện 12 wolfram-oxy được gọi là anion Keggin. Các anion polyoxometalat khác tồn tại ở các nhóm metastable. Khi trong cấu trúc bao gồm một nguyên tử khác như phosphor ở vị trí của hai hydro trung tâm của metawolframat tạo ra sự đa dạng của các acid heteropoly, như acid phosphowolframic H3PW12O40.

Vai trò sinh học[sửa | sửa mã nguồn]

Wolfram số nguyên tử 74, là nguyên tố nặng nhất có mặt trong các cơ thể sống, nguyên tố nặng thứ 2 là iod (Z = 53). Wolfram chưa được tìm thấy là chất cần thiết hoặc được sử dụng trong các sinh vật nhân điển hình, nhưng nó là chất dinh dưỡng thiết yếu đối với một số vi khuẩn. Ví dụ, các enzym oxidoreductase dùng wolfram tương tự như molypden bằng cách sử dụng nó trong phức chất wolfram-pterin với molybdopterin. Molybdopterin, mặc cho tên gọi của nó, không chứa molypden, nhưng có thể tạo phức chất với hoặc là molypden hoặc là wolfram để được sử dụng bởi các sinh vật. Các enzym mang wolfram thường khử các acid cacboxylic thành các aldehyt — một quá trình tổng hợp khó trong hóa và hóa sinh. Tuy nhiên, các oxidoreductase wolfram cũng có thể xúc tác quá trình oxy hóa. Enzym cần wolfram đầu tiên được phát hiện cũng cần selen, và trong trường hợp này cặp đôi wolfram-selen có thể có chứa năng tương tự cặp đôi molypden-lưu huỳnh của các enzym cần phụ nhân tử molybden. Một trong những enzym trong họ oxidoreductase, thỉnh thoảng sử dụng dùng wolfram (các enzym formate dehydrogenase H của vi khuẩn) cũng được biết là sử dụng cặp selen-molypden của molybdopterin. Mặc dù xanthin dehydrogenase chứa wolfram từ vi khuẩn đã được tìm thấy là chứa molydopterin-wolfram và cũng như selen liên kết phi protein, nhưng phức chất molybdopterin wolfram-selen chưa được miêu tả rõ ràng.

Các hiệu ứng khác về sinh hóa[sửa | sửa mã nguồn]

Trong đất, kim loại wolfram bị oxy hóa thành anion wolframat. Nó có thể được nhập vào có chọn lọc hay không chọn lọc bởi một số sinh vật nhân sơ và có thể thay thế cho molybdat trong một số enzym nhất định. Tác động của nó tới phản ứng của các enzym này trong một trường hợp là kiềm chế còn trong một số trường hợp khác lại là tích cực.. Người ta cho rằng các enzym chứa tungstat trong sinh vật nhân chuẩn có thể là trơ. Tính chất hóa học của đất có thể xác định cách mà wolfram được polyme hóa như thế nào; các đất kiềm tạo ra các wolframat đơn phân (monome); các đất acid tạo ra các wolframat polyme.

Natri wolframat và chì đã được nghiên cứu về ảnh hưởng của nó đến các loài giun đất. Chì được tìm thấy là gây tử vong chúng ở các liều lượng thấp còn natri wolframat thì ít độc hơn, nhưng wolframat ức chế hoàn toàn khả năng sinh sản của chúng.

Wolfram đã được nghiên cứu là chất kìm hãm trao đổi chất đồng sinh học, với chức năng tương tự hoạt động của molypden. Người ta phát hiện rằng tetrathiowolframat có thể được dùng làm hóa chất tạo phức chất đồng sinh học, tương tự như tetrathiomolybdat.

Sản lượng[sửa | sửa mã nguồn]

Long đen pw và spw cơ khí nghĩa là gì năm 2024
WolframitSản xuất wolfram năm 2005

Wolfram được tìm thấy trong các khoáng vật wolframit (wolframat sắt-mangan FeWO4/MnWO4), scheelit (calci wolframat, (CaWO4), ferberit (FeWO4) và hübnerit (MnWO4). Chúng được khai thác và dùng để sản xuất khoảng 37.400 tấn wolfram/năm trong năm 2000. Trung Quốc sản xuất hơn 75% tổng sản lượng thế giới, các nước còn lại gồm Úc, Bolivia, Bồ Đào Nha, Nga, và Colombia.

Wolfram được tách từ các quặng của nó qua nhiều công đoạn. Quặng được chuyển đổi từ từ thành wolfram(VI) oxide (WO3), sau đó được nung với hydro hoặc cacbon tạo ra wolfram bột. Nó có thể được dùng ở dạng bột hoặc ép thành các thỏi rắn.

Wolfram cũng có thể được tách ra bằng cách khử hydro của WF6:

WF6 + 3 H2 → W + 6 HF

hoặc nhiệt phân:

WF6 → W + 3 F2 (ΔHr = +)

Wolfram không được mua bán theo kiểu hợp đồng tương lai và không được niêm yết trên các thị trường giao dịch như London Metal Exchange. Giá của wolfram (WO3) vào khoảng 18.975 USD/tấn vào tháng 8 năm 2010.

Ứng dụng[sửa | sửa mã nguồn]

Cận ảnh một sợi Wolfram trong đèn halogen.

Long đen pw và spw cơ khí nghĩa là gì năm 2024
Nhẫn Wolfram carbide (trang sức)

Do có chịu được nhiệt độ cao và có điểm nóng chảy cao nên wolfram được dùng trong các ứng dụng nhiệt độ cao, như dây tóc bóng đèn, ống đèn tia âm cực, và sợi ống chân không, thiết bị sưởi, và các vòi phun động cơ tên lửa.

Do tính dẫn điện và tính trơ hóa hóa học tương đối của nó, wolfram cũng được dùng trong làm điện cực, và nguồn phát xạ trong các thiết bị chùm tia điện tử dùng súng phát xạ trường, như kính hiển vi điện tử. Trong điện tử, wolfram được dùng làm vật liệu kết nối trong các vi mạch, giữa vật liệu điện môi silic đoxide và transistor. Nó được dùng làm các màng kim (hoặc molypden) loại phủ trên miếng silicon thay thế dây dẫn được dùng trong điện tử thông thường.

Chỉ định[sửa | sửa mã nguồn]

Do Wolfram hiếm gặp trong tự nhiên và các hợp chất của nó nhìn chung là trơ nên những ảnh hưởng của nó tới môi trường là hạn chế. Một liều gây chết trung bình LD50 tùy thuộc phần lớn vào động vật và phương pháp điều khiển và nó thay đổi từ 59 mg/kg (tĩnh mạch, thỏ rừng) đến 5000 mg/kg (bột kim loại wolfram, trong phúc mạc, chuột cống).

Tham khảo[sửa | sửa mã nguồn]

  • “Why does Tungsten not 'Kick' up an electron from the s sublevel ?”. Truy cập ngày 15 tháng 6 năm 2008.
  • Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  • Được cho là trải qua quá trình phân rã alpha thành 178Hf với chu kỳ bán rã hơn 7,7×1021 năm.
  • Được cho là trải qua quá trình phân rã alpha thành 179Hf với chu kỳ bán rã hơn 4,1×1021 năm.
  • Được cho là trải qua quá trình phân rã alpha thành 180Hf với chu kỳ bán rã hơn 8,9×1021 năm.
  • Được cho là trải qua quá trình phân rã alpha thành 182Hf hoặc phân rã β−β− thành 186Os với chu kỳ bán rã hơn 8,2×1021 năm.
  • ^ Saunders, Nigel (2004). Tungsten and the Elements of Groups 3 to 7 (The Periodic Table). Chicago, Illinois: Heinemann Library. ISBN 1403435189.
  • “ITIA Newsletter” (PDF). International Tungsten Industry Association. tháng 6 năm 2005. Bản gốc (PDF) lưu trữ ngày 21 tháng 7 năm 2011. Truy cập ngày 18 tháng 6 năm 2008.
  • “ITIA Newsletter” (PDF). International Tungsten Industry Association. tháng 12 năm 2005. Bản gốc (PDF) lưu trữ ngày 21 tháng 7 năm 2011. Truy cập ngày 18 tháng 6 năm 2008.
  • Stevens, Donald G. (1999). “World War II Economic Warfare: The United States, Britain, and Portuguese Wolfram”. The Historian. Questia. Bản gốc lưu trữ ngày 24 tháng 6 năm 2011. Truy cập ngày 8 tháng 9 năm 2010.
  • Kluge: Etymologisches Wörterbuch der deutschen Sprache. (24. Auflage) Berlin: Walter de Gruyter 2002, Seiten 995-996. ISBN 3-11-017473-1(tiếng Đức)
  • ^ Stwertka, Albert (2002). A Guide to the elements (ấn bản 2). New York: Nhà in Đại học Oxford. ISBN 0195150260.
  • van der Krogt, Peter. “Wolframium Wolfram Tungsten”. Elementymology & Elements Multidict. Lưu trữ bản gốc ngày 23 tháng 1 năm 2010. Truy cập ngày 11 tháng 3 năm 2010.
  • “Report on the use of Wolfram as an Alternative Name for Tungsten” (PDF). tr. 49–55. Truy cập ngày 8 tháng 9 năm 2010.[liên kết hỏng](tiếng Anh)
  • “Wolframio, sí; tungsteno, no por Pascual Román Polo” (PDF). Truy cập ngày 9 tháng 8 năm 2010.(tiếng Tây Ban Nha)
  • C. R. Hammond (2004). The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 0849304857.
  • Erik Lassner, Wolf-Dieter Schubert (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. tr. 9. ISBN 0306450534.
  • ^ Daintith, John (2005). Facts on File Dictionary of Chemistry . New York: Checkmark Books. ISBN 0816056498.
  • Heather Bean Material Properties and Analysis Techniques for Tungsten Thin Films Lưu trữ 2011-10-23 tại Wayback Machine. ngày 19 tháng 10 năm 1998
  • Lita, A. E.; Rosenberg, D.; Nam, S.; Miller, A.; Balzar, D.; Kaatz, L. M.; Schwall, R. E. “Tuning of Tungsten Thin Film Superconducting Transition Temperature for Fabrication of Photon Number Resolving Detectors” (PDF). IEEE Transactions on Applied Superconductivity. 15 (2): 3528–3531. doi:10.1109/TASC.2005.849033.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)
  • R. T. Johnson & O. E. Vilches, J. C. Wheatley, Suso Gygax (1966). “Superconductivity of Tungsten”. Physical Review Letters. 16 (3): 101–104. Bibcode:1966PhRvL..16..101J. doi:10.1103/PhysRevLett.16.101.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • S. H. Autler & J. K. Hulm, R. S. Kemper (1965). “Superconducting Technetium-Tungsten Alloys”. Physical Review. 140 (4A): A1177–A1180. Bibcode:1965PhRv..140.1177A. doi:10.1103/PhysRev.140.A1177.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • A Shailos & W Nativel, A Kasumov, C Collet, M Ferrier, S Guéron, R Deblock, H Bouchiat (2007). “Proximity effect and multiple Andreev reflections in few-layer graphene”. Europhysics Letters (EPL). 79: 57008. arXiv:cond-mat/0612058. Bibcode:2007EL.....7957008S. doi:10.1209/0295-5075/79/57008. Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • A. Yu. Kasumov & K. Tsukagoshi, M. Kawamura, T. Kobayashi, Y. Aoyagi, K. Senba, T. Kodama, H. Nishikawa, I. Ikemoto, K. Kikuchi, V. T. Volkov, Yu. A. Kasumov, R. Deblock, S. Guéron, H. Bouchiat (2005). “Proximity effect in a superconductor-metallofullerene-superconductor molecular junction”. Physical Review B. 72 (3): 033414. arXiv:cond-mat/0402312. Bibcode:2005PhRvB..72c3414K. doi:10.1103/PhysRevB.72.033414.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • M. D. Kirk & D. P. E. Smith, D. B. Mitzi, J. Z. Sun, D. J. Webb, K. Char, M. R. Hahn, M. Naito, B. Oh, M. R. Beasley, T. H. Geballe, R. H. Hammond, A. Kapitulnik, C. F. Quate (1987). “Point-contact electron tunneling into the high-T_{c} superconductor Y-Ba-Cu-O”. Physical Review B. 35 (16): 8850–8852. Bibcode:1987PhRvB..35.8850K. doi:10.1103/PhysRevB.35.8850.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  • C. Cozzini (2004). “Detection of the natural α decay of tungsten”. Phys. Rev. C. 70: 064606. doi:10.1103/PhysRevC.70.064606.
  • ^ Alejandro Sonzogni. “Interactive Chart of Nuclides”. National Nuclear Data Center: Brookhaven National Laboratory. Bản gốc lưu trữ ngày 10 tháng 10 năm 2018. Truy cập ngày 6 tháng 6 năm 2008.
  • ^ Emsley, John E. (1991). The elements (ấn bản 2). New York: Oxford University Press. ISBN 0-19-855569-5.
  • Morse, P. M.; Shelby, Q. D.; Kim, D. Y.; Girolami, G. S. (2008). “Ethylene Complexes of the Early Transition Metals: Crystal Structures of [HfEt4(C2H4)2−] and the Negative-Oxidation-State Species [TaHEt(C2H4)33−] and [WH(C2H4)43−]”. Organometallics. 27 (5): 984–993. doi:10.1021/om701189e.
  • Smith, Bradley J.; Patrick, Vincent A. (2000). “Quantitative Determination of Sodium Metatungstate Speciation by 183W N.M.R. Spectroscopy”. Australian Journal of Chemistry. CSIRO. 53 (12): 965. doi:10.1071/CH00140. Truy cập ngày 17 tháng 6 năm 2008.
  • Lassner, Erik (1999). Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds. Springer. tr. 409–411. ISBN 0306450534.
  • Stiefel, E. I. (1998). “Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes” (PDF). Pure & Appl. Chem. 70 (4): 889–896. doi:10.1351/pac199870040889.
  • Khangulov, S. V. (1998). “Selenium-Containing Formate Dehydrogenase H from Escherichia coli: A Molybdopterin Enzyme That Catalyzes Formate Oxidation without Oxygen Transfer”. Biochemistry. 37 (10): 3518–3528. doi:10.1021/bi972177k. PMID 9521673.
  • Schrader, Thomas; Rienhofer, Annette; Andreesen, Jan R. (1999). “Selenium-containing xanthine dehydrogenase from Eubacterium barkeri”. Eur. J. Biochem. 264 (3): 862–71. doi:10.1046/j.1432-1327.1999.00678.x. PMID 10491134.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết) Andreesen J. R.; Makdessi K. (2008). "Tungsten, the Surprisingly Positively Acting Heavy Metal Element for Prokaryotes". Annals of the New York Academy of Sciences 1125: 215-229. Bibcode 2008NYASA1125..215A, doi:10.1196/annals.1419.003, PMID 18096847