Có bao nhiêu số nguyên y sao cho tồn tại x 1 3 3

Có bao nhiêu số nguyên ${y}$ sao cho tồn tại ${x \in\left(\dfrac{1}{3} ; 3\right)}$ thỏa mãn ${27^{3 x^2+x y}=(1+x y) 27^{9 x}}$ ? 27 . 9 . 11 .

12 .

Xét ${f(x)=27^{3 x^2-9 x+x y}-(x y+1)}$ và áp dụng ${a^x \geq x(a-1)+1}$. Suy ra: ${f(x) \geq 26\left(3 x^2-9 x+x y\right)-x y-1=84 x^2+25 x y-234 x-1>0, \forall y \geq 10}$. Do đó ${y \leq 9}$. ${y=0 \Rightarrow 27^{3 x^2-9 x}=1 \Rightarrow 3 x^2-9 x=0:}$ loại. ${y \leq-3 \Rightarrow x y<-1 \Rightarrow V P<0:}$ loại ${y=-1, y=-2}$ : thỏa mãn. Xét ${y>0}$ có ${f(3)=27^{3 y}-(3 y+1) \geq 0, \forall y>0}$. Và ${f\left(\dfrac{1}{3}\right)=3^{y-8}-\dfrac{y}{3}-1<0, \forall y \in\{1 ; 2 ; 3 ; \ldots ; 9\}}$.

${\rightarrow y \in\{-2 ;-1 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9\} .}$

Xét \({{27}^{3{{x}^{2}}+xy}} - (1+xy){{27}^{12x}}\)

Áp dụng bất đẳng thức: \({a^x} \geqslant x(a - 1) + 1\), ta có

\(f(x) \geqslant 26(3{x^2} + xy - 12x) + 1 - (1 + xy) = 78{x^2} + (25y - 312)x > 0,\forall y \geqslant 13\)

Do đó y ≤ 12

\(\begin{gathered}   y = 0 =  > {27^{3{x^2} - 12}} = 1 <  =  > 3{x^2} - 12 = 0 <  =  > \left[ \begin{gathered}   x = 0 \hfill \\   x = 4 \hfill \\  \end{gathered}  \right.(loai) \hfill \\   y \leqslant  - 3 =  > xy <  - 1 =  > VP < 0(loai) \hfill \\ 

\end{gathered} \)

y=-1; y = -2 (thỏa mãn)

Xét y > 0 có f(4) = 274y - (1 + 4y) ≥ 0, \(\forall \) y > 0 và \(f\left( {\frac{1}{3}} \right) = f(x) = {3^{y - 11}} - \frac{y}{3} - 1 < 0,\forall y \in {\text{\{ }}1;2;...;12\} \) 

Do đó pt f(x) = 0 có nghiệm \(x \in \left( {\frac{1}{3};4} \right),\forall y \in {\text{\{ }}1;2;...;12\} \)  

Vậy \(y \in {\text{\{  - 2; - 1;0;}}1;2;...;12\} \) 

Chọn B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Số câu hỏi: 50

Lời giải của GV Vungoi.vn

* pt \( \Leftrightarrow 27{\,^{3{x^2} + xy - 15x}} = xy + 1\).

\( \Rightarrow xy + 1 > 0 \Leftrightarrow y >  - \dfrac{1}{x}\), khi \(x \in \left( {\dfrac{1}{3};5} \right)\) \( \Rightarrow y >  - 3\) thì mới tồn tại \(x \in \left( {\dfrac{1}{3};5} \right)\).

\( \Rightarrow \) Ta chặn được \(y >  - 3\) => \(y \ge  - 2\).

* \(pt \Leftrightarrow {27^{3{x^2} + xy - 15x}} - xy - 1 = 0\).

Đặt \(f\left( x \right) = g\left( y \right) = {27^{3{x^2} + xy - 15x}} - xy - 1\) ta có \(\left\{ \begin{array}{l}f\left( {\dfrac{1}{3}} \right) = {3^{y - 14}} - \dfrac{y}{3} - 1\\f\left( 5 \right) = {27^{5y}} - 5y - 1\end{array} \right.\).

Nhận thấy ngay \(f\left( 5 \right) \ge 0\,\,\forall y \in \mathbb{Z}\), chỉ bằng 0 tại \(y = 0\).

+ Xét \(y = 0 \Rightarrow \) thay vào phương trình ban đầu \( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 5\end{array} \right.\), loại vì không có nghiệm thuộc \(\left( {\dfrac{1}{3};5} \right)\).

+ Xét \(y \ne 0 \Rightarrow f\left( 5 \right) > 0\,\,\forall x \in {\mathbb{Z}^*}\).

1) Ta Table khảo sát \(f\left( {\dfrac{1}{3}} \right)\) với \(\left\{ \begin{array}{l}Start:\,\,y =  - 2\\End:\,\,y = 17\\Step:\,\,\, = 1\end{array} \right.\)

\( \Rightarrow f\left( {\dfrac{1}{3}} \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;15} \right\}\).

\( \Rightarrow f\left( {\dfrac{1}{3}} \right).f\left( 5 \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;15} \right\}\)

\( \Rightarrow \) Có 17 giá trị của \(y\) để tồn tại nghiệm \(x \in \left( {\dfrac{1}{3};5} \right)\).

2) Từ bảng Table ta nhận thấy khi \(y \ge 16\) thì \(f\left( {\dfrac{1}{3}} \right) > 0\) và đồng biến.

Ta đi chứng minh khi \(y \ge 16\) thì phương trình vô nghiệm.

\(g'\left( y \right) = x\left( {{{27}^{3{x^2} + x\left( {y - 15} \right)}}.\ln 27 - 1} \right) > 0\,\,\left\{ \begin{array}{l}\forall y \ge 16\\x \in \left( {\dfrac{1}{3};5} \right)\end{array} \right.\)

\( \Rightarrow g\left( y \right) \ge g\left( {16} \right) = {27^{3{x^2} + x}} - 16x - 1 = h\left( x \right)\).

Ta có \(h'\left( x \right) = {27^{3{x^2} + x}}\left( {6x + 1} \right)\ln 27 - 16 > 0\,\,\forall x \in \left( {\dfrac{1}{3};5} \right)\).

\( \Rightarrow h\left( x \right) > h\left( {\dfrac{1}{3}} \right) = \dfrac{8}{3} > 0\).

\( \Rightarrow \) Phương trình vô nghiệm với \(x \in \left( {\dfrac{1}{3};5} \right)\).

Vậy đáp số có 17 giá trị nguyên của \(y\).

Câu hỏi: 47. Có bao nhiêu số nguyên \(y\)sao cho tồn tại \(x \in \left( {\frac{1}{3};3} \right)\) thỏa mãn \({27^{3{x^2} + xy}} = \left( {1 + xy} \right){.27^{9x}}\)? A. \(27\).

B. \(9\).

C. \(11\).

D. \(12\).

Lời giải

+) Ta có \(\left( 1 \right) \Leftrightarrow 3{x^2} + xy = {\log _{27}}\left( {1 + xy} \right) + 9x\)

\(\, \Leftrightarrow 3{x^2} – 9x – 1 = {\log _{27}}t – t\), với \(t = 1 + xy > 0\).

+) Xét hàm số \(\,f\left( x \right) = 3{x^2} – 9x – 1\).

Ta có \( – \frac{{31}}{4} \le f\left( x \right) < – 1\) \(\forall x \in \left( {\frac{1}{3};3} \right)\).

+) Xét hàm số \(g\left( t \right) = {\log _{27}}t – t,\,\,t > 0\).

\(g’\left( t \right) = \frac{1}{{t\ln 27}} – 1\); \(g’\left( t \right) = 0 \Leftrightarrow t = \frac{1}{{\ln 27}}\)

Ta có \( – \frac{{31}}{4} \le f\left( x \right) < – 1\) \(\forall x \in \left( {\frac{1}{3};3} \right)\). Suy ra \( – \frac{{31}}{4} \le g\left( t \right) < – 1 \Leftrightarrow \left[ \begin{array}{l}t \in \left( { \approx {{8,07.10}^{ – 12}}; \approx 0,04} \right)\\t \in \left( {1; \approx 8,4} \right)\end{array} \right.\)

hay \(\left[ \begin{array}{l} \approx {8,07.10^{ – 12}} < 1 + xy < \approx 0,04\\1 < 1 + xy < \approx 8,4\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} \approx \frac{{ – 1 + {{8,07.10}^{ – 12}}}}{x} < y < \approx \frac{{ – 1 + 0,04}}{x}\\0 < y < \approx \frac{{7,4}}{x}\end{array} \right.\)

\( \Rightarrow \left[ \begin{array}{l} – 3 < y < – \frac{1}{3}\\0 < y \le 22\end{array} \right.\), (\(x \in \left( {\frac{1}{3};3} \right)\), \(y\) nguyên).

+) Nhận thấy \(y = – 2;y = – 1\) thỏa mãn đề.

+) Với \(0 < y \le 22\), ta có \(\left( 1 \right)\)\(\, \Leftrightarrow 3{x^2} – 9x – 1 – {\log _{27}}\left( {1 + xy} \right) + \left( {1 + xy} \right) = \)\(0\).

Nhập hàm, thay các giá trị nguyên của y, kiểm tra nghiệm \(x \in \left( {\frac{1}{3};3} \right)\) dẫn đến chọn \(1 \le y \le 9\).

(Chú ý hàm số \(f\left( t \right) – t\) nghịch biến trên khoảng \(\left( {\frac{1}{3}; + \infty } \right)\) nên \(\forall y \ge 10\), ta có:\(\,3{x^2} – 9x – 1 – {\log _{27}}\left( {1 + xy} \right) + \left( {1 + xy} \right) \le 3{x^2} – 9x – 1 – {\log _{27}}\left( {1 + 10x} \right) + \left( {1 + 10x} \right) < 0\) \(\forall x \in \left( {\frac{1}{3};3} \right)\).

Do đó loại \(y \ge 10\)).

Vậy \(y \in \left\{ { – 2; – 1;1;2;…;9} \right\}\) nên có \(11\) giá trị nguyên của \(y\) thỏa mãn đề.

=======